Summary and Conclusions

The electrochemical response of $[Rh_2(dimen)_4]^{2+}$ has been studied by cyclic voltammetry, potential-step methods, and double-potential-step chronocoulometry. The appearance of the CV is dramatically influenced by relatively weak ionic aggregation of the $[Rh_2(dimen)_4]^{2+}$ species and the strong complexation of the 2e oxidized species $[Rh_2(dimen)_4]^{4+}$ formed at the electrode. The potential odd-electron intermediate $([Rh₂(dimen)₄]^{3+})$ is quite unstable. It either is oxidized further at the electrode or undergoes rapid disproportionation. This behavior is in contrast with the behavior of $[Rh_2(bridge)_4]$ ³⁺, which has previously been found to dimerize at the diffusion limit to form the stable $[Rh_2(bridge)_4]_2^{6+}$ ion.^{4,5,8}

The observed differences in the behavior of the bridge and dimen systems are intriguing, because they must involve the interplay of several factors: differences in the Rh-Rh bond length of the $[Rh_2(L)_4]^{3+}$ complexes, the changes in stability caused by axial complexation, and steric restraints in the dimen system along the Rh-Rh bond axis which might preclude dimerization to the $[Rh_2(L)_4]_2^{6+}$ species. The observed pro-

pensity of the $[Rh_2(dimen)_4]^{2+}$ system to undergo net 2e jumps in oxidation state indicates that it may have importance in solar energy storage schemes. Studies designed to test the viability of this idea are currently in progress.

Acknowledgment. M.R.R. gratefully acknowledges the National Science Foundation for a fellowship. In addition we also wish to thank Barbara Moriarity and Prof. John Evans for several very helpful discussions and for the use of the equipment needed for the double-potential-step experiments. This research was supported in part by a grant from the **DOE** Corrosion Center.

Registry No. $[Rh_2(dimen)_4](PF_6)_2$, 72478-06-9; $[Rh_2(dt-1)]$ men)₄Cl₂](PF₆)₂, 90269-63-9; [Rh₂(dimen)₄]²⁺, 72478-05-8; [Rh₂- $(\text{dimen})_4\text{Cl}_2$]²⁺, 90269-62-8; $[\text{Rh}_2(\text{dimen})_4(\text{ClO}_4)_2]^{2+}$, 90269-64-0; $[Rh_2(dimen)_4]^{4+}$, 90269-65-1; $[Rh_2(dimen)_4(PF_6)_2]^{2+}$, 90269-66-2; Rh, $7440-16-6$; Cl₂, $7782-50-5$; benzyltriethylammonium chloride, 56-37-1.

Supplementary Material Available: A listing of Q, ratios for double-potential-step chronocoulometry (1 page). Ordering information is given on any current masthead page.

> Contribution from Rocketdyne, A Division of Rockwell International, Canoga Park, California 91 304

Coordinatively Saturated Fluoro Cations. Oxidative Fluorination Reactions with KrF' Salts and PtF₆

KARL **0.** CHRISTE,' WILLIAM W. WILSON, and RICHARD D. WILSON

Received August *24, 1983*

The usefulness of KrF^+ salts and PtF₆ as oxidative fluorinators for the syntheses of the coordinatively saturated complex fluoro cations NF_4^+ , CIF_6^+ , and BrF_6^+ was studied. The syntheses of NF_4SbF_6 , NF_4AsF_6 , NF_4BF_4 , and $NF_4TiF_5\cdot nTiF_4$ from KrF₂-Lewis acid adducts and NF₃ were investigated under different reaction conditions. The fluorination of NF₃ by KrF⁺SbF₆⁻ in HF solution was found to proceed quantitatively at temperatures as low as -31 °C, indicating an ionic two-electron oxidation mechanism. An improved synthesis of KrF+MF6- (M = *As,* Sb), Raman data and solubilities in HF, and the existence of a Kr_2F_3 ⁺-nKrF₂BF₄⁻ adduct in HF at -40 °C are reported. Attempts to fluorinate OF₂, CF₃NF₂, and ClF₄O⁻ with KrF⁺ salts were unsuccessful. Whereas KrF⁺ is capable of oxidizing NF₃, ClF₅, and BrF₅ to the corresponding complex fluoro cations, PtF₆ was shown to be capable of oxidizing only NF₃ and CIF₅. Since the yield and purity of the NF_4 ⁺ fluoroplatinate salts obtained in this manner were low, NF_4PF_6 was also prepared from NF_3 , F_2 , and PF_6 at elevated temperature and pressure. General aspects of the formation mechanisms of coordinatively saturated complex fluoro cations are discussed briefly.

Introduction

The preparation of coordinatively saturated complex fluoro cations presents a great challenge to the synthetic chemist. The nonexistence of the corresponding parent molecules preempts the normally facile cation formation by a simple **F** abstraction from a parent molecule, and an **Ft** addition to a lower fluoride is ruled out by the fact that fluorine is the most electronegative element and therefore **F+** cannot be generated by chemical means.' In view of these difficulties it is not surprising that at the present time only three coordinatively saturated fluoro cations, $NF_4^{+2,3}$ ClF₆^{+,4,5} and $BrF_6^{+,6}$ are known to exist. In addition to their challenge to the synthetic chemist, the formation mechanism of these cations represents an intriguing and as yet unsolved puzzle.'

- Christe, .~ **K.** 0.; Wilson, W. W.; Curtis, E. C. *Inorg. Chem.* **1983,** *22,* (1) **3056.**
- (2) Christe, **K.** 0.; Guertin, J. P.; Pavlath, A. E. *Inorg. Nucl. Chem. Lett.*
- **1966,** *2, 83.* Tolberg, W. E.; Rewick, R. T.; Stringham, R. **S.;** Hill, **M.** E. *Inorg. Nucl. Chem. Lett.* **1966.** *2,* 79. (3)
-
- Roberto, F. Q. *Inorg. Nucl. Chem. Lett.* **1972,** 8, 737.
Christe, K. O*. Inorg. Nucl. Chem. Lett.* **1972,** 8, 741.
Gillespie, R. J.; Schrobilgen, G. J. *J. Chem. Soc., Chem. Commun.* **1974,** 90; *Inorg. Chem.* **1974,** *13,* 1230.

These problems were complicated by the facts that each of the three known coordinatively saturated fluoro cations had been prepared by a different method²⁻⁶ and that these methods could not readily be transferred from one cation to another. The purpose of this study was to examine whether the synthesis of each coordinatively saturated fluoro cation is indeed limited to a specific method and whether these methods possess any commonalties.

Experimental Section

Apparatus. Volatile materials used in this work were handled in a stainless steel-Teflon FEP vacuum line. The line and other hardware used were well passivated with $CIF₃$ and, if HF was to be used, with HF. Nonvolatile materials were handled in the dry-nitrogen atmosphere of a glovebox. Metathetical reactions and solubility measurements were carried out in HF solution with use of an apparatus consisting of two FEP U-traps interconnected through a coupling containing a porous Teflon filter.⁸

Infrared spectra were recorded in the range 4000-200 cm-' on a Perkin-Elmer Model 283 spectrophotometer. Spectra of solids were obtained by using dry powders pressed between AgCl windows in an

(8) Christe, **K.** *0.;* Shack, C. J.; Wilson, R. D. *Inorg. Chem.* **1977,** *16,* 849.

⁽⁷⁾ Christe, **K.** 0.; Wilson, R. D.; Goldberg, I. B. *Inorg. Chem. 1979, 18,* 2572 and references cited therein.

Coordinatively Saturated Complex Fluoro Cations

Econo press (Barnes Engineering Co.). Spectra of gases were obtained by using a Teflon cell of 5-cm length equipped with AgCl windows.

Raman spectra were recorded on a Cary Model 83 spectrophotometer using the 4880-A exciting line of an **Ar** ion laser and Claassen filter9 for the elimination of plasma lines. Sealed glass, Teflon FEP, or Kel-F tubes were used **as** sample containers in the transverseviewing-transverse-excitation mode. Lines due to the Teflon or Kel-F sample tubes were suppressed by the use of a metal mask.

Materials. Literature methods were used for the preparation of PtF_6 ,¹⁰ KrF₂,¹¹ CF₃NF₂,¹² ClF₃O,¹³ ClF₅,¹⁴ and **FNO**¹⁵ and for the drying of HF.¹⁶ Nitrogen trifluoride (Rocketdyne), F₂ (Air Products), $OF₂$ (Allied Chemical), BrF₅ and BF₃ (Matheson), and AsF₅, SbF₅, and TiF_4 (Ozark Mahoning) were commerically available. Their purity was checked by vibrational spectroscopy prior to use and, where necessary, improved by fractional condensation or distillation.

Preparation of KrFSbF₆. Antimony pentafluoride (21.7 mmol) was syringed in the drybox into a prepassivated Teflon FEP U-tube equipped with two stainless steel valves. The tube was connected to the vacuum line, and dry HF (5 mL of liquid) was distilled into the tube. The HF and $SbF₅$ were allowed to homogenize at ambient temperature, and a preweighed amount of $KrF₂$ (22.9 mmol) was transferred under a dynamic vacuum into the U-tube at -196 °C. The mixture was warmed toward room temperature until a slight effervescence was noted. At this point the tube was cooled again, and the warmup procedure was repeated. After a total of three warmup cycles, all volatile material was pumped off at -22 °C, leaving behind pure KrFSbF₆ (21.5 mmol = 99% yield based on SbF₅). $KrFAsF_6$ was prepared in an analogous manner, except the As F_5 was loaded into the tube on the vacuum line.

Reaction of NF₃ with KrF_2 **and** AsF_5 **. A prepassivated (with ClF₃)** 10-mL stainless steel Hoke cylinder equipped with a $\frac{1}{8}$ in. Whitey stainless steel valve was loaded on the vacuum line at -196 °C with $KrF₂$ (6.15 mmol), As $F₅$ (3.07 mmol), and NF₃ (21.9 mmol). The cylinder was placed in a liquid- N_2 -dry-ice slush bath and allowed to warm slowly to room temperature over a 30-h time period and then was kept in an oven at 53 °C for 4 days. The cylinder was cooled to -210 °C (N₂ slush bath, prepared by pumping on liquid N₂), and the volatile products were separated during warmup of the cylinder by fractional condensation through traps kept at -156 °C (nothing) and -210 °C (24.9 mmol of NF₃ and Kr). The white solid residue (827.6 mg = 2.97 mmol) was identified by infrared and Raman spectroscopy as pure $NF_4AsF_6^{17}$ (96.7% yield based on AsF₅).

Reaction of NF₃ with KrF₂ and BF₃. The reaction was carried out as described above for the corresponding $\text{As}F_5$ system, except for a 40% reduction in the amount of starting materials used. The yield of solid NF_4BF_4 was 30.6% based on BF_3 .

Reaction of Solid KrFSbF₆ with NF₃. KrFSbF₆ (2.42 mmol) was added in the drybox to a prepassivated Teflon PFA U-tube (59 mL volume) equipped with Teflon PFA valves. The tube was connected to the vacuum line, and NF₃ (2.43 mmol) was added at -196 °C. After 3 h at 22 "C, the volatile products were removed. Analyses of the volatile material and of the solid residue showed that 12.7% of the $KrFSbF_6$ had been converted to an NF_4 ⁺ salt.

When the reaction was repeated with 2.32 mmol of $KrFSbF₆$ and 6.84 mmol of NF₃ at 30 °C for 3.5 h, the conversion of KrFSbF₆ to $NF₄$ ⁺ salts was 43.8%. An additional treatment of the solid mixture of NF_4 ⁺ salts and unreacted KrFSbF₆ with more NF₃ for 4 h at 30 \degree C resulted in little further conversion to NF₄⁺ salts. Vibrational spectra of the white solid product showed the presence of the NF_4 ⁺,¹⁷ $KrF^{+,18}$ Sb $F_6^{-,19}$ and Sb₂ F_{11}^{-17} ions.

(9) Claassen, H. H.; Selig, H.; Shamir, J. *J. Appl. Spectrosc.* **1969,** *23, 8.* **(10)** Weinstock, B.; Claassen, H. H.; Malm, J. G. *J.* Am. *Chem.* Soc. **1957,** *79,* **5832.** Weinstock, B.; Malm, J. G.; Weaver, E. E. *Zbid.* **1961,** *83,* **4310.**

-
-
- (11) Christe, K. O.; Wilson, R. D. *Inorg. Chem.* **1975**, 14, 694.
(12) Schack, C. J. J. Fluorine Chem. **1981**, 18, 583.
(13) Pilipovich, D.; Lindahl, C. B.; Schack, C. J.; Wilson, R. D.; Christe, K.
O. *Inorg. Chem.* **197**
- **(14)** Pilipovich, D.; Maya, W.; Lawton, E. A.; Bauer, H. F.; Sheehan, D. F.; Ogimachi, N. N.; Wilson, R. D.; Gunderloy, F. C.; Bedwell, **V.** E. Inorg. *Chem.* **1967,** *6,* **1918.**
- **(15)** Christe, K. **0.** *Znorg. Chem.* **1973,** *12,* **1580.**
- **(16)** Christe, K. **0.;** Wilson, W. W.; Schack, C. J. *J. Fluorine Chem.* **1978,** *11,* **71.**
- **(17)** Christe, K. *0.;* Schack, C. J.; Wilson, R. D. *Znorg. Chem.* **1976,** *15,* **1275.**
- **(18)** Gillespie, R. J.; Schrobilgen, G. J. *Znorg. Chem.* **1976,** *15,* **22.**

Reactions of KrFSbF₆ with NF₃ in HF Solution. General Procedure. $KrFSbF₆$ (\sim 3 mmol) was weighed in the drybox into a prepassivated 0.5 in. 0.d. Teflon PFA U-tube (58 mL volume) equipped with two Teflon PFA valves. The tube was connected to the vacuum line, and anhydrous HF (\sim 1.25 g) and NF₃ were added at -196 °C. The contents of the tube were warmed for a specified time period to the desired reaction temperature. The reaction was stopped by quickly pumping off the NF_3 , followed by removal of the HF solvent. The material balances were obtained by separating the volatile products via fractional condensation through traps kept at -126 and -210 °C, by PVT measurements and infrared analysis of each fraction, and by the weight change of the solid phase and its Raman and infrared spectra, which were compared against those of mixtures of known composition. When stoichiometric amounts of $KrFSbF_6$ and NF_3 were used, the NF_3 was condensed into the U-tube and the valves were closed. When a large excess of NF_3 was used, the NF_3 pressure was kept constant at 1000 mm by the use of a large ballast volume and a pressure regulator. The results of these reactions are summarized in Table **I.**

Reaction of PtF₆ with NF₃ in HF. A prepassivated Teflon FEP U-trap (119 mL volume) was loaded at -196 °C with HF (5 mL liquid) and equimolar amounts (4.88 mmol each) of PtF_6 , NF_3 , and F_2 . The contents of the trap were kept at 25 °C for 14 h. All volatile material was pumped off at 25 °C, leaving behind 828 mg of a dark red tacky solid, which based on its infrared spectrum was an NF_4^+ salt (1158 vs cm⁻¹, $\nu_3(F_2)$) of PtF₆⁻ and/or a fluoroplatinate polyanion (665 vs, 625 **s,** 560 vs cm-'). Attempts were unsuccessful to purify the sample by extraction with anhydrous HF.

UV Photolysis of NF,-PtF,. A prepassivated **0.5** in. 0.d. sapphire reactor¹ (26 mL volume) was loaded at -196 °C with PtF₆ (1.22 mmol) and NF_3 (1.31 mmol). The mixture was irradiated for 2 days at ambient temperature with a Hanovia Model 616A high-pressure quartz mercury vapor arc lamp. All volatile material was pumped off at 25 °C, leaving behind a red-brown solid (116 mg), which based on its infrared spectrum contained the NF₄⁺ cation (2000 w cm⁻¹, $v_1 + v_3$ (F₂); 1218 mw cm⁻¹, $2\nu_4(A_1 + E + F_2)$; 1159 vs cm⁻¹, $\nu_3(F_2)$; 607 m cm⁻¹ $\nu_4(F_2)$ ¹⁷ and a fluoroplatinate polyanion (690 vs, 659 vs, 636 s, 535 vs, br cm^{-1}).

Synthesis of NF₄PtF₆. Into a prepassivated Monel cylinder (100 mL volume) were loaded PtF_6 (2.22 mmol), NF₃ (211.8 mmol), and F₂ (216.7 mmol) at -196 °C. The cylinder was heated to 125 °C for 7 days, followed by removal of all material volatile at 25 °C. The residue consisted of 802 mg of a dark red solid (weight calcd for 2.22 mmol of $NF_4PF_6 = 884$ mg), which on the basis of its infrared and Raman spectra consisted mainly of NF_4PF_6 .^{15,17,20} IR (cm⁻¹): NF_4^+ , 2305 vw $(2v_3)$, 1995 w $(v_1 + v_3)$, 1758 vw $(v_3 + v_4)$, 1452 w $(v_1 + v_3)$ ν_4 , 1220 mw (2 ν_4), 1180 sh, 1158 vs, 1145 sh (ν_3), 1049 w ($\nu_2 + \nu_4$) sh, 650 vs, 625 sh **(Q),** 570 **s,** tr *(vz).* Raman (cm-'): NF4+, 850 mw 606 m (ν_4) ; PtF₆⁻, 1320, 1300, 1280 w $(\nu_1 + \nu_3)$, 1220 $(\nu_2 + \nu_3)$, 675 *(Vi);* PtF6-, 641 VS (vi), 580 mW **(Yz),** 239 m **(Ys),** 194 W *(Vg).*

Reaction of PtF, with CIFs in HF. A prepassivated **0.75** in. 0.d. Teflon FEP ampule (49-mL volume) was loaded at -196 °C with PtF₆ (2.10 mmol) , HF (2 mL liquid) , and ClF₅ (4.20 mmol) . The mixture was allowed to slowly warm to ambient temperature in an empty cold Dewar. After the ampule was kept for 2 days at ambient temperature, the brown PtF₆ color had disappeared. The volatile material was

⁽¹⁹⁾ Christe, K. **0.;** Wilson, R. D.; Schack, C. J. *Znorg. Chem.* **1977,16,937. (20)** Tolberg, W. E.; et al., unpublished results.

removed in vacuo at room temperature and separated by fractional condensation. It consisted of the HF solvent and CIF₅ (2.1 mmol). The orange-yellow solid residue **(0.91 g)** was shown by infrared and Raman spectroscopy to be an about equimolar mixture of CIF_4PtF_6 and $CIF₆PtF₆¹⁵$ (weight calculated for a mixture of 1.05 mmol of CIF_4PtF_6 and 1.05 mmol of $CIF_6PtF_6 = 0.923$ g).

When the reaction was repeated under the same conditions, except for use of BrF_5 in place of CIF₅, no evidence for the formation of a stable BrF_6^+ salt was obtained.

Results

Syntheses and Some Properties of KrF,-Lewis Acid Adducts. Although the synthesis of $KrF^+MF_6^-$ (M = As, Sb) salts is well-known,^{6,18,21,22} the reported direct combination of $KrF₂$ with the Lewis acids can result in a spontaneous exothermic decomposition of $KrF₂$ accompanied by a bright flash and gas evolution.18 In this study this problem was avoided by dissolving the Lewis acid in a large excess of anhydrous HF before adding a stoichiometric amount of $KrF₂$. This procedure resulted in an easily controllable, scalable, and quantitative synthesis of the desired KrF_2 -Lewis acid adducts.

Since the Raman spectra of solid $KrF^{+}MF_{6}^{-}$ salts show many more bands than expected for an isolated diatomic cation and an octahedral anion,¹⁸ we have recorded the Raman spectrum of $KrF+SbF_6^-$ in HF solution at -5 °C. The total number of bands was reduced to four, as expected for a diatomic KrF⁺ (610 cm⁻¹) and octahedral SbF₆⁻ ($v_1(A_{1g}) = 656$, $\nu_2(E_g) = 576$, $\nu_5(F_{2g}) = 278$ cm⁻¹), thus confirming that the additional bands observed for solid KrF⁺SbF₆⁻¹⁸ are indeed due to solid-state effects. The solubility of $KrF^+SbF_6^-$ in anhydrous HF at **-31 OC** was also measured as **43.9** mg/g of HF by the use of a previously described method.¹⁶

Since mixtures of $KrF₂$ and $BF₃$ in anhydrous HF are capable of oxidizing NF_3 to NF_4^+ (see below), it was interesting to establish whether BF_3 forms an adduct with KrF_2 under these conditions. Raman spectra of an equimolar mixture of $KrF₂$ and $BF₃$ in anhydrous HF at -40 °C showed bands (597 **(lo), 561 (2), 462 (73, 334** (I), **179 (1.7)** cm-I) characteristic for $Kr_2F_3^{\text{+}} \cdot xKrF_2^{18}$ and a weak band at 879 cm⁻¹ due to $\nu_1(A_1)$ of BF_3 ²³ The bands expected for BF_4^- were difficult to observe under the given conditions due to their low relative intensity and the low signal to noise ratio. Removal of volatile material under a dynamic vacuum at **-78** "C resulted in a white solid residue which, on the basis of its Raman spectrum (461 cm⁻¹) at -110 °C, consisted of KrF₂.²⁴ These results clearly show that $KrF₂$ does not form a stable solid adduct with BF, at temperatures as low as **-78** "C but that in HF solution, even at temperatures as high as -40 °C, ionization to $[Kr_2F_3 + xKrF_2][BF_4]$ occurs. The observation of free BF₃ is readily accounted for by the formation of krypton fluoride polycations, which leaves most of the BF_3 uncomplexed. Whether any free $KrF₂$ is also present in the HF solution is difficult to say because the $KrF₂$ band coincides with the 462-cm⁻¹ band of $Kr_2F_3 + xKrF_2$.¹⁸

Fluorination Reactions with KrF+ Salts. The oxidative fluorination of NF₃ to NF₄⁺ by KrF⁺ salts was first discovered²⁵ by Artyukhov and Khoroshev and independently rediscovered in our laboratory. In our study, mixtures of NF_3 , $KrF₂$, and either AsF₅ or $BF₃$ in mole ratios of 7:2:1 were allowed to warm in stainless steel cylinders from **-196** to +50 "C under autogenous pressures of about **75** atm. In **2** days NF_4AsF_6 and NF_4BF_4 had formed in 97 and 30% yield, respectively, based on the limiting reagents AsF_5 and BF_3 , in

agreement with the equations

\n
$$
NF_{3} + KrF_{2} + AsF_{5} \rightarrow NF_{4}AsF_{6} + Kr
$$
\n
$$
NF_{3} + KrF_{2} + BF_{3} \rightarrow NF_{4}BF_{4} + Kr
$$

In the Russian study the reactions were carried out at room temperature either with solid $KrF^{+}SbF_6^-$ and 1 atm of NF, or in HF solution with stoichiometric amounts of KrF_2 , NF_3 , and one of the Lewis acids SbF_5 , NbF_5 , PF_5 , TiF_4 , and BF_3 at total pressures of **3-4** atm and with reaction times of **1-3** h. On the basis of elemental analyses and vibrational spectra their products were assigned to NF_4 ⁺ salts of SbF_6 ⁻, NbF₆⁻, PF_6^- , Ti F_6^{2-} , and BF_4^- , respectively.²⁵ We have repeated some of these reactions in our laboratory because for $(NF_4)_2$ TiF₆ and NF_4SbF_6 the reported vibrational spectra were those of polyanions, $17,19,26$ and no yields and concentration or temperature dependences were given that would help to shed some light on the possible mechanism of these reactions.

Our results for the reaction of solid KrFSbF₆ with NF₃ showed that indeed the NF_4^+ cation is formed but that under the reported conditions²⁵ the reaction is incomplete and that the NF_4 ⁺ salt is mainly $NF_4Sb_2F_{11}$ and not NF_4SbF_6 .

When the reaction of KrF_2-SbF_5 mixtures or of preformed $KrFSbF_6$ with stoichiometric amounts of NF_3 was carried out, as previously reported,²⁵ in HF solution at ambient temperature, the reaction was complete in less than **3** h. However, contrary to the previously reported elemental analysis but in agreement with the listed vibrational spectra,²⁵ the solid product consisted mainly of $NF_4Sb_2F_{11}$ (~90%) and not NF_4SbF_6 . The formation of mainly $NF_4Sb_2F_{11}$ suggests that under these conditions the oxidation of NF_3 by KrFSbF₆ is not quantitative and that some $KrFSbF_6$ decomposes to Kr, F_2 , and SbF₅ with the latter combining with NF₄SbF₆ to form $NF_4Sb_2F_{11}$. By lowering the reaction temperature, we succeeded in completely suppressing the formation of $NF_4Sb_2F_{11}$, and NF_4SbF_6 was obtained as the only product, contaminated by large amounts of unreacted $KrFSbF₆$. However, a quantiative oxidation of NF_3 by KrFSbF₆ according to $NF_3 + KrFSbF_6 \rightarrow NF_4SbF_6 + Kr$

$$
NF_3 + KrFSbF_6 \rightarrow NF_4SbF_6 + K_1
$$

was accomplished by the use of a sufficient excess of $NF₃$. Since the concentration of $NF₃$ in the HF solution is proportional to the NF_3 pressure above the solution,²⁷ the excess of $NF₃$ required for a complete reaction can be minimized by using a small ullage in the reactor. This results in a high $NF₃$ pressure and consequently in a high concentration of $NF₃$ in the HF solution. The results of a series of runs are summarized in Table I and demonstrate that, for example at -31 °C in HF solution at an NF_3 pressure of 1000 mm, NF_3 can quantitatively be oxidized by $KrFSbF_6$ to NF_4SbF_6 in less than 1 h.

In the absence of yield data in the previous report, $2⁵$ it was of interest to examine whether NF_4BF_4 can also be formed quantitatively under similar conditions. We found that an equimolar mixture of KrF_2 , NF_3 , and BF_3 in anhydrous HF, when allowed to warm slowly from -196 to +25 °C and kept at **25** "C for **3** h, resulted in only a **28.1%** yield of pure NF_4BF_4 . When the reaction was carried out at -78 °C for **3** h, the yield of NF4BF4 **(7.1%)** was, contrary to the NF3- $KrFSbF₆$ system, still appreciable. Without the use of HF as a solvent and at ambient pressure, no detectable amounts of NF4BF4 were obtained after **3** h at **25** "C. However, as stated above, the use of a sevenfold excess of NF_3 at 45 atm pressure and gentle heating to **53 OC** for **4** days resulted in a **31%** yield of NF_4BF_4 .

In view of the known tendency of $TiF₄$ to form polyanion salts with $(NF_4)_2TiF_6^{26}$ and the fact that the vibrational bands

⁽²¹⁾ Frlec, B.; Holloway, J. H.; *Inorg. Chem.* **1976.15, 1263;** *J. Chem. Soc., Chem. Commun.* **1974,89.**

⁽²²⁾ Selig, H.; Peacock, R. D. J. Am. Chem. Soc. 1964, 86, 3895.
(23) Lindeman, L. P.; Wilson, M. K. J. Chem. Phys. 1956, 24, 242.
(24) Claassen, H. H.; Goodman, G. L.; Malm, J. G.; Schreiner, F. J. Chem. *Phys.* **1965,** *42,* **1229.**

⁽²⁵⁾ Artyukhov, A. A.; Khoroshev, *S. S. Koord. Khim.* **1977,** *3,* **1478.**

⁽²⁶⁾ Christe, K. 0.; Schack, C. J. *Inorg. Chem.* **1977, 16, 353. (27) Rewick, R. T.; Tolberg, W. E.; Hill, M. E.** *J. Chem. Eng. Data* **1970, 15,** *521.*

Coordinatively Saturated Complex Fluoro Cations

attributed in the Russian study²⁵ to TiF₆²⁻ resemble those of a polyanion,²⁶ we have also repeated the reaction of NF_3 with $KrF₂$ and TiF₄ in the same 2:2:1 mole ratio in HF solution at room temperature for 3 h. On the basis of the observed material balance, our solid product had the average composition $NF_4TiF_5.2.25TiF_4$. The presence of only polytitanate anions and of no TiF_6^{2-} was confirmed by vibrational spectroscopy (strongest Raman bands at **795** and **755** cm-'). On the basis of our above results for NF_4SbF_6 , it appears safe to predict that the use of a large excess of $NF₃$ and particularly of an increase in the NF₃ pressure and concentration should also decrease the extent of polyanion formation in the N- $F_3-KrF_2-TiF_4$ system.

Attempts to prepare the unknown $OF_3^+AsF_6^-$ and OF_3^+ - SbF_6^- salts by the above methods (reaction of OF_2 with KrFMF₆ in either HF solution at temperatures as low as -31 $\rm ^oC$ or neat in a nickel cylinder under 25 atm of OF₂ pressure) produced no evidence for the existence of these salts.

We have also attempted to oxidatively fluorinate CF_3NF_2 with KrF^+ salts to $CF_3NF_3^+$ salts. A mixture of KrF_2 , AsF₅, and CF_3NF_2 in a mole ratio of 1.86:1:5.62, when slowly warmed in a nickel reactor from -196 to $+50$ °C, produced NF_3 and CF_4 as the main products, with the excess of CF_3NF_2 being decomposed to give CF_4 and cis- and trans- N_2F_2 . cis- N_2F_2 reacted with AsF₅ to form solid $N_2F^+AsF_6^{-.28}$ Attempts to moderate this reaction by using preformed $KrFSbF_6$ and HF as a solvent resulted again in an oxidative fluorination of the C-N bond with CF_4 , NF_3 , and some trans- N_2F_2 as the main products. However, in this case the white solid product consisted mainly of NF_4SbF_6 . $xSbF_5$.

An attempt was also made to oxidize the ClF₄O⁻ anion^{29,30} with preformed $KrFSbF_6$ in anhydrous HF solution at -78 °C. The reaction

 $KrFSbF_6 + CsClF_4O + HF \rightarrow$ $CsSbF_6 + Kr +F_7 + ClF_2O^+HF_7$

was observed. This result is not surprising since $CsCIF₄O$ was shown to readily undergo solvolysis in $\overline{H}F$
CsClF₄O + 2HF \rightarrow CsHF₂ + ClF₂O⁺HF₂

$$
CsClF4O + 2HF \rightarrow CsHF2 + ClF2O+HF2
$$

and because the CIF₂O⁺ cation is difficult to oxidize.¹⁵ Reaction of solid $KrFSbF_6$ with CsClF₄O and of liquid ClF₃O with KrF_2 also did not result in oxidation of the ClF₄O⁻ anion.

Fluorination Reactions with PtF₆. Since gaseous PtF₆ does not react with gaseous NF_3 at ambient temperature to any significant extent,²⁰ we have studied this reaction in HF solution without irradiation and in the gas phase under the influence of unfiltered UV irradiation. In both cases, the vibrational spectra of the solid reaction products demonstrated the formation of some NF_4 ⁺ salts. The anions in these salts were not very well defined due to the simultaneous formation of PtF_s and possibly lower platinum fluorides and their interaction with PtF_6^- to form polyanions. Attempts to purify the products by extraction with anhydrous HF were unsuccessful.

To obtain a better defined sample of an NF_4 ⁺ fluoroplatinate salt for comparison, we have prepared NF_4PF_6 by a known, but unpublished, method.²⁰ When a large excess of F_2 and NF_3 was used and the reaction was carried out at 125 °C under an autogenous pressure of about 140 atm, NF₄PtF₆ was obtained in high yield according to

 $2NF_3 + F_2 + 2PtF_6 \rightarrow 2NF_4PtF_6$

(30) Christe, K. *0.;* Curtis, **E.** C. Inorg. *Chem.* **1972,** *12,* 2209.

The NF_4PtF_6 salt is a stable solid that shows spectra characteristic for tetrahedral NF_4 ⁺¹⁷ and octahedral PtF₆⁻¹⁵

It was shown that the known oxidative fluorination of CIF_5 to ClF₆⁺ with PtF₆^{4,5,15} can also be carried out at room temperature in HF solution without requiring UV irradiation:

$$
2CIF_5 + 2PtF_6 \frac{HF}{25 \text{ °C}} ClF_4 + PtF_6^- + ClF_6 + PtF_6^-
$$

However, attempts to prepare $BrF_6^+PtF_6^-$ in an analogous manner from BrF_5 and PtF_6 were unsuccessful.

Discussion

Syntheses of Coordinatively Saturated Fluoro Cations. At present, only three coordinatively saturated fluoro cations, i.e. NF_4^+ , Cl F_6^+ , and BrF_6^+ , are known to exist. They can be prepared from the corresponding lower fluorides by one or more of the following three methods: (1) oxidation **of** KrF+ salts; (2) oxidation by PtF_6 ; (3) oxidation by F_2 in the presence of a strong Lewis acid and an activation energy source.

One of the goals of this study was to examine the scope of these methods. A priori one would expect that the ease of preparing a given coordinatively saturated fluoro cation should increase with increasing oxidizing power of the fluorinating agent and with decreasing oxidation potential of the desired coordinatively saturated fluoro cation. Although the oxidation potentials of the three coordinatively saturated fluoro cations are unknown, a comparison with those of either the isoelectronic fluorides CF_4 , SF_6 , and SeF_6 or the corresponding oxo anions in the same oxidation states, i.e. $NO₃^-$, $ClO₄^-$, and $BrO₄$, suggests that the oxidation potentials should increase in the order $NF_4^+ < CIF_6^+ < BrF_6^+$. As far as the order of oxidizing power of KrF^+ , Pt F_6 , and F_2 -Lewis acid combinations is concerned, Sokolov et al. have shown that KrF+ can oxidize PtF_6 to PtF_6 ,³¹ and both KrF^+ and PtF_6 are expected to be stronger oxidizers than mixtures of $F₂$ with Lewis acids. Therefore, the oxidizer strength should increase in the order F_2 -Lewis acid < PtF_6 < KrF^+ .

The results of this study are in accord with these predictions. Thus, KrF⁺, the most powerful oxidizer, is capable of oxidizing all three substrates, $N\bar{F}_3$, ClF₅, and BrF₅. The second strongest oxidizer, PtF₆, can still fluorinate NF_3 and ClF₅, whereas the weakest oxidizer, the Lewis acid- F_2 mixtures, can oxidize only $NF₃$. These results show that the preparative methods are transferable from one coordinatively saturated fluoro cation to another, provided that the oxidant is powerful enough to oxidize the substrate. Obviously, secondary effects such as the possibility of high activation energy barriers and competitive side reactions might also be important. For example, the activation energy sources used in the F_2 -Lewis acid method can cause breakdown of ClF_s and BrF_s to F₂ and lower fluorides with the latter being continuously removed from the equilibrium by rapid complexing with the Lewis acid. For NF_3 , such a side reaction is not effective, and the F_2 -Lewis acid method is therefore well suited for the preparation of NF_4 ⁺ salts.

Formation Mechanisms of Coordinatively Saturated Fluoro Cations. Previous reports' have been concerned almost exclusively with the formation and decomposition mechanisms of NF_4 ⁺ salts, and several different mechanisms have been proposed. These include the heterolytic fission of fluorine^{2,32}
(mechanism I), the dissociation of NF_4AsF_6 to yield unstable
mechanism I
 $NF_3 + F^{6+} - F^{6-} + AsF_5 \xrightarrow{\Delta E} NF_4 + AsF_6$ (mechanism I), the dissociation of NF_4AsF_6 to yield unstable

mechanism I

$$
NF_3 + F^{6+} - F^{6-} + ASF_5 \xrightarrow{\Delta E} NF_4 + AsF_6
$$

⁽²⁸⁾ Christe, K. 0.; Wilson, R. D.; Sawodny, W. *J.* Mol. **Srrucr. 1971, 8,** 245. (29) Christe, K. *0.;* Schack, C. J.; Pilipovich, D. Inorg. *Chem.* **1972,** *11,*

^{2205.}

⁽³¹⁾ Sokolov, V. B.; Drobyshevskii, Yu. V.; Prusakov, V. N.; Ryzhkov, A.
V.; Khoroshev, S. S. *Dokl. Akad. Nauk SSSR* 1976, 229, 641.
(32) Christe, K. O.; Guertin, J. P., Pavlath, A. E. U.S. Patent 3 503 719, 1970.

 $NF₅³³$ (mechanism II), the formation of an intermediate mechanism I1

$$
NF4 AsF6 \rightleftharpoons [NF5] + AsF5
$$

[NF₅] \leftarrow NF₃ + F₂

strongly oxidizing Lewis acid-F radical³⁴ (mechanism III), mechanism I11

$$
F_2 \rightleftharpoons 2\dot{F}
$$

\n
$$
\dot{F} + AsF_5 \rightleftharpoons AsF_6
$$

\n
$$
\dot{A}sF_6 + NF_3 \rightleftharpoons NF_3^+AsF_6^-
$$

\n
$$
\dot{N}F_3^+AsF_6^- + \dot{F} \rightleftharpoons NF_4^+AsF_6^-
$$

the formation of an intermediate NF_4 radical⁷ (mechanism IV), and the absorption and ionization of NF₃ on a KrF⁺MF₆mechanism IV

$$
F_2 \rightleftharpoons 2\overline{F}
$$

\n
$$
\dot{F} + NF_3 \rightleftharpoons NF_4
$$

\n
$$
\dot{N}F_4 + AsF_5 \rightleftharpoons \dot{N}F_3 + AsF_6^-
$$

\n
$$
\dot{N}F_3 + AsF_6^- + \dot{F} \rightleftharpoons NF_4 + AsF_6^-
$$

surface²⁵ (mechanism V). For the formation of NF_4 ⁺ salts mechanism V

mechanism V
NF₃ + KrF⁺SbF₆⁻
$$
\rightarrow
$$
 (F₃N^{δ+}...F^{δ-}...Kr^{δ+})⁺SbF₆⁻ \rightarrow NF₄⁺SbF₆⁻ + Kr

from NF_3 , F_2 , and Lewis acids, the importance of the F_2 dissociation step and of NF_3 ⁺ formation has previously been experimentally confirmed, $34,35$ thus rendering mechanisms III and IV most likely. Of these two mechanisms, mechanism IV has previously been preferred by us because the formation and decomposition of $\overline{NF_4}^+$ salts were assumed to follow the same mechanism, and the decomposition of NF_4AsF_6 is suppressed more strongly by AsF_5 than by NF_3 .⁷ However, recent ab initio molecular orbital calculations³⁶ have provided evidence for NF₄ being energetically unfavorable, and the formation and decomposition of NF_4 ⁺ salts do not necessarily proceed by the same mechanism. These considerations prompted us to reconsider our previous preference.

The results of the present study confirm that NF_4 ⁺ salts can be formed from NF_3 and F_2 -Lewis acid mixtures, KrF⁺ salts, or PtF_6 . Furthermore, the fact that the reaction of KrF^+ with $NF₃$ not only proceeds quantitatively but also proceeds at temperatures $(-31 \text{ to } -45 \text{ °C})$ at which KrF⁺SbF₆⁻ is completely stable rules out a free-radical mechanism based on the decomposition of $KrF₂$ to Kr and F atoms and supports an ionic mechanism for the $KrF^{+}-NF_3$ reaction. In such an ionic mechanism, NF_3 is oxidized either to an intermediate NF_3^+ radical cation or directly to NF_4^+ . In view of the quantitative yields of NF_4 ⁺ salts and our failure to obtain evidence for an intermediate NF_3 ⁺ radical cation in these $KrF⁺$ reactions by **ESR** spectroscopy, the direct fluorination to NF_4^+ is preferred. One can easily envision an intermediate activated complex between the electrophilic KrF⁺ cation and the, albeit weak, electron donor NF₃, which could readily decompose to NF₄⁺ with Kr elimination.

For the reactions of NF_3 with F_2 -Lewis acid mixtures the requirement for an activation energy source capable of dis-

sociating F_2 ³⁴ the ESR evidence for the intermediate formation of the NF_3 ⁺ radical cation,³⁵ and the unlikely formation of an $NF₄$ radical³⁶ favor free-radical mechanism III. For the thermal decomposition of NF_4 ⁺ salts which are derived from stable Lewis acids, mechanism I1 is preferred because it best explains the observed strong rate suppression by the Lewis acids.7

Even in the absence of experimental data it appears rather safe to propose for the PtF_6 oxidation reactions a one-electron transfer leading to $NF_3+PtF_6^-$ as an intermediate, which is then further fluorinated by a second PtF_6 molecule to NF_4^+ . Such a mechanism is in accord with the rather low yields of NF_4^+ salts obtained for the NF_3-PtF_6 system and has previously also been proposed for the CIF₅-PtF₆ system.¹⁵

Considering all the experimental evidence presently available for the formation mechanisms of coordinatively saturated complex fluoro cations, it appears that all reactions exhibit a certain commonality. The crucial step in all systems appears to be the reaction of a powerful one-electron (PtF_6 or Lewis acid-F) or two-electron (KrF') oxidizer with the substrate $(NF_3, CIF_5,$ or BrF_5) resulting in an electron transfer from the substrate to the oxidant, with a simultaneous (in the case of KrF^+) or subsequent (in the case of PtF₆ and Lewis acid-F) fluorination of the intermediate radical cation $(NF_3^+, CIF_5^+,$ BrF_5^+) to give the final product (NF_4^+ , ClF_6^+ , BrF_6^+). Thus, the mechanisms of the three presently known methods for the

syntheses of NF₄⁺ salts might be written

Lewis acid-F₂ system
 $F_2 \xrightarrow{\Delta E} 2\dot{F}$
 $\dot{F} + AeF_2 \rightarrow \dot{A}cF_1$ syntheses of NF_4 ⁺ salts might be written

Lewis acid- F_2 system

$$
F_2 \xrightarrow{\Delta E} 2\dot{F}
$$

\n
$$
\dot{F} + AsF_5 \rightarrow \dot{As}F_6
$$

\n
$$
\dot{As}F_6 + NF_3 \rightarrow \dot{N}F_3^+AsF_6^-
$$

\n
$$
\dot{N}F_3^+AsF_6^- + \dot{F} \text{ (or } \dot{As}F_6) \rightarrow NF_4^+AsF_6^-
$$

 PtF_6 system

m
\n
$$
NF_3 + PtF_6 \rightarrow NF_3^+PtF_6^-
$$

\n $NF_3^+PtF_6^- + PtF_6 \rightarrow NF_4^+PtF_6^- \cdot PtF_5$

KrF+ system

$$
NF_3 + KrF^+SbF_6^- \rightarrow [KrF...NF_3]^+SbF_6^-
$$

$$
[KrF...NF_3]^+SbF_6^- \rightarrow NF_4^+SbF_6^- + Kr
$$

As can be seen from these equations, an ionic oxidant (KrF') results in an ionic mechanism and a radical oxidant (LAF or PtF_6) in a radical mechanism.

If in the Lewis acid- F_2 reactions the hard base NF_3 is replaced by a soft base, such as Xe, the reaction can proceed even in the absence of an activation energy source, as was demonstrated by Stein for the $Xe-F_2-SbF_5$ system.³⁷ Although XeF+ is not a coordinatively saturated cation, this reaction is most interesting. Contrary to the $NF_3-F_2-Lewis$ acid reactions, it probably proceeds as a two-electron oxidation reaction by F_2 and therefore might be considered as the only presently known example of an actual heterolytic fission of fluorine by a Lewis acid and a Lewis base:³²
 $Xe^{-F\delta^+} - F^{\delta^-}$.SbF₅ $\rightarrow XeF^+SbF_6$

$$
Xe^{-F\delta^+ - F\delta^- - Sb}F_{\delta} \rightarrow XeF^+SbF_{\delta}
$$

The lower activation energy required for fluorinating Xe, compared to that for NF_3 , is attributed mainly to its increased polarizability (i.e., it is a softer base) and to a lesser degree to the difference in their ionization potentials $(IP_{NF_3} = 13.0$ eV, $IP_{Xe} = 12.13$ eV), because the hard base O_2 has an even lower IP of **12.06** eV but does not react with fluorine and a

⁽³³⁾ Solomon, I. J.; Keith, J. N.; Snelson, A. *J. Fluorine Chem.* **1972**, 2, 129. **(34)** Christe, K. O.; Wilson, R. D.; Axworthy, A. E. *Inorg. Chem.* **1973**, *12*, **(34) Christe, K. 0.; Wilson, R. D.; Axworthy, A. E.** *Znorg. Chem. 1973.12,* **2478.**

⁽³⁵⁾ Goldberg, I. B.; Crowe, H. R.; Christe, K. O. *Inorg. Chem.* 1978, 17, **3189.**

⁽³⁶⁾ Peters, N. J. S.; Allen, L. C.; De Frees, D. J.; Pople, J. A., to be submitted for publication.

⁽³⁷⁾ Stein, L. *J. Fluorine Chem.* **1982, 20, 65.**

Lewis acid in the absence of an activation energy source.

Conclusion. Although the present study has provided us with more insight into the formation reactions of coordinatively saturated complex fluoro cations, and particularly into those involving the use of KrF⁺ salts as an oxidant, there is a definite need for more experimental and theoretical work in this field to further establish the mechanisms of these interesting re-

Acknowledgment. We are indebted to Drs. C. J. Schack and

L. R. Grant for helpful discussions, to Drs. I. B. Goldberg and **T.** McKinney for ESR measurements, and to the Army Research Office and the Office of Naval Research for financial support of this work.

Registry No. KrFSbF₆, 52708-44-8; SbF₅, 7783-70-2; NF₃, need for more and work in **this** 7783-54-2; NF4AsF6, 16871-75-3; BF,, 7637-07-2; NF4BF4, 15640 actions.
CIF₆, 13637-63-3; F₂, 7782-41-4; CIF₄PtF₆, 38123-69-2; CIF₆PtF₆, 2025-87-9; actions. ClF4PtF6, 13637-63-3; F₂, 7782-41-4; CIF₄PtF₆, 38123-69-2; CIF₆PtF₆, 2025-89-2; CIF₆PtF₆, 2025-89-2;

> Contribution from the Department of Chemistry, Texas Christian University, Fort Worth, Texas 76129

Reactions of Mono(disily1amino)phosphines with Carbon Tetrachloride'

RANDAL R. FORD, MARY A. GOODMAN, ROBERT H. NEILSON, AROOP K. ROY, URSZULA G. WETTERMARK, and PATTY WISIAN-NEILSON*

Received September 8, *1983*

A series of mono(disilylamino)phosphines $(Me_3Si)_2NPRR'$ (R, R' = Me, Et, *i-Pr, t-Bu*, CH₂SiMe₃, CH₂CH=CH₂, CH₂Ph, CH₂CH₂, CH₂CH₂CH₂, CH₂CH₂, CH₂CH₂, CH₂CH₂, CH₂CH₂, CH₂CH₂, CH₂C

Ph, NMe₂, OMe, OCH₂CF₃) and two related phosphines, Me₂SiCH₂CH₂Me₂SiNP(t-Bu)CH₂SiMe₃ and (t- $BuMe₂Si)₂NPMe₂$, were treated either with neat CCl₄ or with CCl₄ in CH₂Cl₂. The reactions proceeded with elimination of CHCl₃ and/or Me₃SiCCl₃ to form a variety of new *P*-chloro-*N*-silylphosphoranimines of general formula Me₃SiN= P(C1)R'R''. The preferential course of the reaction was dependent on solvent polarity and on the electronic and steric influence of the substituents at nitrogen and phosphorus. Complete physical and spectroscopic ⁽¹H, ¹³C, and ³¹P NMR) characterization data are given for the new phosphines and **P-chloro-N-silylphosphoranimines.**

Introduction

Due to the reactivity of the silicon-nitrogen bond, the chemistry of **(disilylamino)phosphines**, i.e. (Me₃Si)₂NPRR', often differs substantially from that of simple alkyl- or aryl-substituted phosphines? **As** part of our continuing study of the reactivity of silicon-nitrogen-phosphorus compounds, we have investigated the oxidation reactions of a variety of **bis(disilylamino)phosphines3** and mono(disily1amino)phosphines with CCl₄.

The reaction of CCl_4 with tertiary phosphines that contain a CH proton α to phosphorus, but no disilylamino groups, produces CHCl₃ and phosphorus ylides.⁴ This presumably occurs via initial formation of an ion-pair intermediate $[R_3PCl^+][CC]_3^{-15}$ with subsequent attack at the hydrogen by the $CC1₃$ anion.

It was shown earlier that an alternate reaction pathway also becomes important when CCl_4 interacts with phosphines containing both an α -hydrogen and two disilylamino groups.³ In addition to proton abstraction by the $CCl₃⁻$ anion, attack at a silicon-nitrogen bond may occur with elimination of $Me₃SiCCl₃$. The competition between these two pathways is influenced by the steric bulk of the substituents at phosphorus and by solvent polarity.

In this paper, we report the reactions of CCl_4 with mono-**(disily1amino)phosphines** that contain a-hydrogens. *As* in the reactions of CCl, with **bis(disilylamino)phosphines,** both the silicon-nitrogen bond and the α -hydrogens are potentially reactive sites. **Two** different types of N-silylphosphoranimine products may, therefore, be produced from these reactions *(eq* 1).

Our primary objectives were (a) to compare the $CCl₄$ reaction products with those obtained from bis(disily1amino) phosphines or from tertiary phosphines with no disilylamino substituents, (b) to better understand the influence of steric and electronic differences of substituents at phosphorus, i.e. R, R', and R'', and (c) to prepare various P -chloro- N -silylphosphoranimines, which are potential precursors to polyphosphazenes and to novel three-coordinate phosphorus compounds.

Results and Discussion

Phosphine Synthesis. The various bis(disily1amino)phosphines **used** in this study can be divided into four general categories: (1) simple dialkyl- or alkyl(pheny1)phosphines **(1** - **7); (2) ((trimethylsily1)methyl)phosphines (8-14); (3)** phosphines with benzyl or allyl substituents **(15-18); (4)** systems with N-silyl groups other than Me,Si **(19** and **20).**

Many of these phosphines were prepared as described previously by using the Wilburn procedure⁶ or related meth- \log_2 ^{7,8} Of the compounds reported here for the first time, phosphines 8 and **13** were prepared by the nucleophilic sub-

^{(1) (}a) Wisian-Neilson, P.; Ford, R. R.; Li, B.-L.; Neilson, R. H. "Abstracts of Papers", 183rd National Meeting of the American Chemical Society, Las Vegas, NV, March 1982; American Chemical Society: Washington, DC, 1982; INOR 147. (b) Ford, R. R.; Goodman, M. A.; Li, B.-L.; Neilson, R. H.; Roy, A. Z.-M. Proceedings of the XVII Organosilicon Symposium, Fargo, ND, June **1983.**

⁽²⁾ Morton, D. W.; Neilson, R. H. *Orgunometallics* **1982,** *1,* 289 and references sited therein.

⁽³⁾ Li, B.-L.; Engenito, J. **S.,** Jr.; Neilson, **R.** H.; Wisian-Neilson, **P.** *Inorg. Chem.* **1983,** *22,* **575.**

⁽⁴⁾ (a) Appel, **R.;** Peters, J.; Schmitz, R. *2. Anorg. Allg. Chem.* **1981,** *18,* **475. (b)** Kolodiazhnyi, **0.** I. *Tetruhedron* Lett. **1980,** *21,* 3983.

⁽⁵⁾ Appel, R. *Angew.* Chem., *Inr. Ed. Engl.* **1975,** *14,* **801.**

⁽⁶⁾ Neilson, **R.** H.; Wisian-Neilson, **P.** *Inorg. Chem.* **1982,** *21, 3568.* **(7)** ONeal, H. **R.;** Neilson, **R.** H. *Inorg. Chem.* **1983, 22, 814.**

⁽⁸⁾ Neilson, **R.** H. *Inorg. Chem.* **1981,** *20,* **1679.**